
UCRL-JC-132017
Preprint

Overture: An Object-Oriented Framework for Solving
Partial Differential Equations on Overlapping Grids

D. L. Brown,
W. D. Henshaw,

D. J. Quinlan

This paper was prepared for submittal to
Society for Industrial & Applied Mathematics

Workshop on Object Oriented Methods for
Interoperable Scientific and Engineering Computing

Yorktown Heights, NY
October 21-23,1998

September 22,1998

This is a preprint of a paper intended for publication in a journal or procee
Since changes may be made before publication, this preprint is made avail

. 1

permission of the author.

DISCLAIMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial oroduct. nrocess. or service bv trade name. trademark. manufacturer. or otherwise. does not
necessarily constitute’ or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and shall not
be used for advertising or product endorsement purposes.

Overture : An Object-Oriented Framework for Solving
Partial Differential Equations on Overlapping Grids*

David L. Brown+ William D. Henshawt Daniel J. Quinlanl

Abstract

The Overture framework is an object-oriented environment for solving partial
differential equations in two and three space dimensions. It is a collection of C++
libraries that enables the use of finite difference and finite volume methods at a level
that hides the details of the associated data structures. Overture can be used to solve
problems in complicated, moving geometries using the method of overlapping grids. It
merges geometry, grid generation, difference operators, boundary conditions, data-base
access and graphics into an easy to use high level interface.

1 Introduction
The design of Overture has evolved over the past 15 years or so from the Fortran
based CMPGRD[7] environment to the current C++ version [5, 61. Although the Fortran
implementation was used for complicated three-dimensional adaptive and moving grid
computations, the programs were difficult to write and maintain. Overture was designed
to have at least all the functionality of the Fortran code but to be as easy as possible to
use; indeed, an entire PDE solver on an overlapping grid can be written on a single page
(see section 2.7).

A composite overlapping grid consists of a set of logically rectangular curvilinear grids
that overlap where they meet and together are used to describe a computational region
of arbitrary complexity. This method has been used successfully over the last decade
and a half; primarily to solve problems involving fluid flow in complex, often dynamically
moving, geometries [2, 3, 10, 11, 231. There are a number of reasons why the design
and implementation of a flexible overlapping grid solver is quite complex. First of all
the data structures required to hold geometry information (vertices, Jacobian, boundary
normals, interpolation data, etc.) and the information for moving grids, adaptive grids
and multigrid are extensive. Secondly, complicated partial differential equations are solved
using sophisticated numerical algorithms; for example, a current application in our group
involves low Mach-number combustion with many reacting species. In addition, techniques
such as block structured adaptive-mesh-refinement [l, 2, 201 may be used to locally
increase grid resolution and increase overall computational efficiency. If the simulation
is to run on a parallel architecture, there are correspondingly more issues involved in
writing the code. The net result of the data structures, advanced algorithms, and modern
architectures is a PDE solver code that is an extremely complex system. Successfully
writing, debugging, modifying and maintaining software that implements this system is a

‘http://wnnv.llnl.gov/casc/Overture
‘Centre for Applied Scientific Computing, Lawrence Livermore National Laboratory, Livermore, CA.

7

.

2

FIG. 1. Displaying results from a moving grid computation using the Overture framework.

daunting if not impossible task using a traditional structnred programming approach and
procedural languages such as Fortrsn or C. This has provided the primary motivation for
the development of the Overture framework in C++.

There are a number of other very interesting projects developing scientific object-
oriented frameworks. These include the SAMRAI framework for structured adaptive mesh
refinement .[22], PETSc (the Portable Extensible Toolkit for Scientific Computation) [18],
POOMA (Parallel Object Oriented Methods and Applications)(lS] and Diffpack[S].

2 The Overture framework
The main class categories that make up Overture are as follows:

l Arrays 1211: describe multidimensional arrays using A++/P++. A++ provides
the serial array objects, and P++ provides the distribution and interpretation of
communication required for their data parallel execution.

l Mappings [14]: define transformations such as curves, surfaces, areas, and volumes.
These are used to represent the geometry of the computntional domain.

. Grids [8, 131: define a discrete representation of a mapping or mappings. These
include single grids, and collections of grids; in particulnr composite overlapping grids.

l Grid functions [13]: storage of solution values, such xs density, velocity, pressure,
defined at each point on the grid(s).

3 The Overture Framework

A++ P++ Arrays I - Mappings I

GenericDataBase
HDF-DataBase

FIG. 2. An overview of the Overture classes

l Operators [4, 121: provide discrete representations of differential operators and
boundary conditions

e Plotting [17]: a high-level interface based on OpenGL allows for plotting Overture
objects.

l Adaptive Mesh Refinement: The AMR++ library for patch based refinement is
described in section 2.6.

Solvers for partial differential equations are written using the above classes.

2.1 Array operations
A++ and P++ [al] are array class libraries for performing array operations in C++ in
serial and parallel environments, respectively. The use of P++ is the principle mechanism
by which the Overture framework operates in parallel, there is little code in Overture
outside of P++ which is specific to parallel execution.

A++ is a serial array class library similar to FORTRAN 90 in syntax, but not requiring
any modification to the C++ compiler or language. A++ provides an object-oriented array
abstraction specifically well suited to large scale numerical computation. It provides efficient
use of multidimensional array objects which serves to both simplify the development of
numerical software and provide a basis for the development of parallel array abstractions.
P++ is the parullek array class library and shares an identical interface to A++, effectively
allowing A++ serial applications to be recompiled using Pff and thus run in parallel.
This provides a simple and elegant mechanism that allows serial code to be reused in the
parallel environment.

7

.

4

P++ provides a data parallel implementation of the array syntax represented by the
A++ array class library. To this extent it shares a lot of commonality with FORTRAN
90 array syntax and the HPF programming model. However, in contrast to HPF, P++
provides a more general mechanism for the distribution of arrays and greater control as
required for the multiple grid applications represented by both the Overlapping Grid model
and the Adaptive Mesh Refinement (AMR) model. Additionally, current work is addwssing
the addition of task parallelism as required for parallel adaptive mesh refinement.

Here is~ a simple example code segment that solves Poisson’s equation in either a serial
or parallel environment using the A++/P++ classes. Notice how the Jacobi iteration for
the entire array can be written in one statement.

// Solve u-xx + u-yy = f by a Jacobi Iteration
Range R(0.n) // define a range of indices: 0,1,2,...,n
floatArray u(R,R), f (R,R) // ___ declare two two-dimensional arrays
f = 1.: u = cl.: h = I./n; /I __. initialize arrays and parameters
Range I(l,n-0, J(l,n-1); // define ranges for the interior

for(int iteration=O; iterationC100; iteration++)
u(1.J) = .25r~u~I+l,J~+u~I-l.J~+u~I,J+l~+u~I~J-l~-f~I,J~*~h*h~~; // ___ data parallel

2.2 Mappings, grids and grid generation
The geometry of the computational domain is defined by a set of mappings, one mapping
for each grid. In general, a mapping defines a transformation from R” to R’“. In particular,
mappings can define lines, curves, surfaces, volumes, rotations, coordinate stretchings,
rtc.[l4]. The base class Mapping contains the data and functions that apply to all mappings.
Specific types of mappings arc dcriwtl from t,his base ~1~s. Mappings contain a variety of

FIG. 4. Overlapping grid for (1 valve, port and cylinder.

information and functions that can be useful for grid generators and solvers. For example,
mappings contain information about their domain space, range space, boundary conditions
and singularities. Mappings are easily composed, allowing coordinate stretching, rotations,
translations, bodies of revolution, etc. The inverse of a mapping is always defined, either
analytically or by discrete approximation.

Grids define a discrete representation of a mapping. There are several main grid classes
[8, 131. The Mapped&id class defines a grid for a single mapping that contains, among
other things, a mapping and a mask array for cut-out regions. The GridCollection class
defines a collection of MappedGrid’s. The CompositeGrid class defines a valid overlapping
grid, which is essentially a GridCollection plus interpolation information. Grids contain
many geometry arrays such as grid points, Jacobians , normal vectors, face areas and cell
volumes.

Overture has support for the creation of overlapping grids for complicated geometries.
The overlapping grids shown in figures (3) and (4), for example. were created entirely with
Overture tools. Current work involves the creation of grids for geometries imported
from computer-aided-design packages. Overture has a sophisticated overlapping grid
generator, Ogen 1151, that automatically determines how component grids overlap one
another, computing which points to interpolate and removing points that lie outside the
computational domain.

2.3 Grid functions
Grid functions represent solution values at each point on a grid or grid-collection. There
is a grid function class (of float’s, int’s or double’s) corresponding t,o each type

6

of grid [13]. So, for example, a MappedGridFunction lives on a MappedGrid and a
CompositeGridFunction lives on a CompositeGrid. Grid functions are defined with up
to three coordinate indices (i.e. up to three space dimensions) and up to five component
indices (i.e. they can be scalars, vectors, matrices, S-tensors,...). Since they are derived
from A++ arrays, all of the array operations are defined. In the following example, a grid
function is made and assigned values at all points on the grid.

SphereMapping sphere; // mapping for a spherical shell
MappedGrid mg(sphere); // grid for a spherical shell
mg.update(); // compute some geometry arrays
Range all; // used as a place marker for coordinates
floatMappedGridFunction u(mg,all,all,a11,2); // define a 3D grid function with 2 components
Index 11,12,13;
get1ndex(mg.dimension,11,12,13); // define indices for all grid points
// first component of u = sin(x>*cos(y) :
u~Il,I2,I3,O~=sin~mg.vertex~Il,I2,I3,0~~*cos~mg.vertex(II,I2,I3,1));

Notice that when the f 1oatMappedGridFunction is declared, the number of grid points
does not have to be specified since this information is contained in the MappedGrid.

2.4 Differential operators
Operators define discrete approximations to differential operators and boundary conditions
for grid functions. Many different types of approximations can be used. For example,
the class MappedGridOperators [12] defines finite-difference style operators, while the
class MappedGridFiniteVolumeOperators [4] defines finite-volume style operators. An
operator class for incompressible flow Godunov methods has also been implemented. The
Projection class computes the divergence-free part of a velocity function and is used in
some of our incompressible flow codes. Here is an example using one of the operator classes:

. . .
MappedGrid mgcsphere);
MappedGridOperators op(mg>; // Define operators for a MappedGrid
floatMappedGridFunction u(mg), v(mg), coeff;
u.setOperators(op); // associate operators with a grid function
. . . assign u here . . .
v=u.xo; // take the x derivative of u
// form the matrix for the discrete Laplacian:
coeff=u.xxCoefficientsO+u.yyCoefficientsO+u.zzCoefficientsO;
// another way to form the matrix for the Laplacian:
coeff=u.laplacianCoefficientsO;

The result of the statement u.x(> is a grid function containing the x-derivative of u (on
a curvilinear grid). The last line in the above example generates a discrete representation
of the Laplacian operator (stored as a 27 point stencil in the second-order accurate case).
This coeff grid function can be passed to a sparse matrix solver, using for example the
Oges class in Overture [16].

2.5 Boundary Conditions
The programming model for boundary conditions is to use ghost points (instead of one-sided
difference approximations). A library of elementary boundary conditions such as Dirichlet,
Neumann, mixed, extrapolation, etc. has been defined. Solvers define more complicated
boundary conditions in terms of these elementary ones. The interface is quite simple, as can
be seen in the following code fragment that sets boundary conditions for the incompressible
Navier-Stokes equations on a no-slip wall.

7

// no-slip wall:
// (1) (u,v,w> = 0.
// (2) extrapolate ghostline values
// (3) set the divergence of (u,v,w) equal to zero

const int wall=5; // This value is associated with a boundary condition
// value that is given to each side of each grid

Range V(O,numberDfDimensions-I); // velocity components

u.applyBoundaryCondition(V,dirichlet, wall,O.);
u.applyBoundaryCondition(V,extrapolate, wall);
u.applyBoundaryCondition(V,generalizedDivergence,wall);
u.finishBoundaryConditions();
1

2.6 Adaptive mesh refinement
Adaptive mesh refinement is the process of permitting local grids to be added to the
computational domain and thus adaptively tailoring the resolution of the computational
grid. The block-structured AMR algorithm implemented in Overture provides such
support for both simple problems with a single underlying grid, and problems that use
the composite overlapping grid method. The AMR algorithm itself uses the multiple grid
functionality provided by the basic Overture classes in an essential way. AMR results is
greater computational efficiency but is difficult to support. AMR++ is a library within
the Overture framework which builds on top of the previously mentioned components
and provides support for Overture applications requiring adaptive mesh refinement.
AMR++ is current work being developed and supports the adaptive regridding, transfer
of data between adaptive refinement levels, parent/child/sibling operations between local
refinement levels, and includes parallel AMR support. AMR++ is a parallel adaptive mesh
refinement library because it is uses classes which derive their parallel support from the
A++/P++ array class library.

2.7 Writing PDE solvers
This example demonstrates the power of the Overture framework by showing a basically
complete code that solves the partial differential equation (PDE)

w + CwlT + h2Ly = Y(U,, + uyy)
on an overlapping grid.

int main0
{

Composite&id cg; // create a composite grid
getFromADataBaseFile(cg,"myGrid.hdf"); // read the grid in
floatCompositeGridFunction u(cg>; // create a grid function
u=i.; // assign initial conditions
CompositeGridOperators op(cg); // create operators
u.setOperators(cg);
PlotStuff ps; // make an object for plotting
// --- solve a PDE ----
float t=O, dt=.005, a=l., b=l., nu=.i;
for(int step=O; step<lOO; step++)
-t

u+=dt*(-a*u.xO-b*u.yO+nu*(u.xx()+u.yy()));

* Choose the overlapping
grid: stir.hdf
stir.show
incompressibleNavierStokes
turn off twilight zone
project initial conditions
turn on moving grids
specify grids to move

stir
rotate
0. 0. 0.
.5

done
choose grids for implicit

all=explicit
stir=implicit

done
pde parameters

nu
.Ol

done
boundary conditions

all=noSlipWall
done
initial conditions

uniform flow
p=l.

final time (tf=)
3

0.50

0.00

-0.25

-0.50 -0.25 0.00 0.25 0.50
x times to plot (tp=)

,025

0.626

0.469

0391

FIG. 5. On the left is a sample script command file for running the flow solver OverBlown.
On the right is the result from the computation of incompressible flow around a rotating stirring

t+=dt ;
u. interpolate 0 ; // interpolate overlapping boundaries
// apply the BC u=O on all boundaries
u.applyBoundaryCondition(O,dirichlet,allBoundaries,O.~;
u.finishE%oundaryConditions();
ps . contour(u) ; // plot contours of the solution

1 -
return 0;

The PlotStuf f object is used to interactively plot contours of the solution at each time
step[17].

Overture can be easily used by the numerical analyst to develop PDE solvers for
overlapping grids. Within our research group we are also developing sophisticated PDE
solvers for various applications that we hope to distribute in the near future. For example,
the OverBlown Navier-Stokes solver is being developed for solving the Navier-Stokes
equations at different Mach numbers. Figure (5) shows streamlines of the solution to
the incompressible Navier-Stokes equations around a rotating stirring stick and the script
file that was used to run OverBlown. Figure (6) shows results of a three-dimensional
computation from OverBlown.

3 Performance
Overture makes extensive use of the A++/P++ array class library that supports array

.operations on both serial and parallel machines. In the current implementation, the array

FIG. 6. Incompressible j4ow through a three-dimensional valve

operations can be 2-8 times slower that Fortran 77 on some cache based architectures.
However, preliminary results from the ROSE preprocessor project indicate that full
Fortran 77 performance can be recovered from the array statements since the preprocessor
can replace the high level operations by multi-dimensional loops. It has also been shown that
a common array operation of an array statement inside a loop (such as a Jacobi iteration)
can actually be made to run over twice as fast as the standard Fortran 77 implementation.
These preliminary results show that high level implementations may actually have a greater
practical potential for performance gains than a lower level approach. It is much easier to
have a preprocessor that understands the semantics of a class interpret high-level statements
and prodlice (perhaps lengthly) optimized code that to write this same code in many places
through-out a long program. For further details see the article on Optimirataons for Parallel
Object-Oriented Frameworks in this proceedings.

4 Software availability
The Overture framework and documentation is available for public distribution from the
web site,http://www.llnl.gov/casc/Overture.

References

11) M. J. Berger and P. Colella, Locnl adaptive mesh refinement for shock hydrodynnmics, J. Camp.
Phys., 82 (1989), pp. 64-84.

[2] I<. D. Brislawn, D. L. Brown, G. Cheshire, and J. S. Saltnnan, Adaptive ronlposite overlappillg
grids for hyperbolic consrruotion lnws, LANL Unclassified Report 95.257, Los Alamos Nnt,ional
Laboratory, 1995.

10

PI -, Classes for finite volume operators and projection operators, LANL unclassified report
96-3470, Los Alamos National Laboratory, 1996.

[5] D. L. Brown, Geoffrey S. Chesshire, William D. Henshaw and Daniel J. Quinlan, Overture :
!4n Object Oriented Software System for Solving Partial Diigerential Equations in Serial and
Parallel Environments, Proceedings of the Eight SIAM Conference on Parallel Processing for
Scientific Computing, 1997.

[6] , D. L. Brown, William D. Henshaw and Daniel J. Quinlan, Overture : An Object Oriented
Framework for Solving Partial Differential Equations, Scientific Computing in Object-Oriented
Parallel Environments, Springer Lecture Notes in Computer Science, 1343, 1997.

[7] G. Chesshire and W. D. Henshaw, Composite overlapping meshes for the solution of partial
differential equations, J. Comp. Phys., 90 (1990), pp. l-64.

[8] G. S. Chesshire, Overture : the grid classes, LANL unclassified report 96-3708, Los Alamos
National Laboratory, 1996.

[9] Diffpack homepage, http://wuw.nobjects.com/diffpack.
[lo] F. C. Dougherty and J. Kuan, Transonic store separation using a three-dimensional Chimera

grid scheme, AIAA paper 89-0637, AIAA, 1989.
[Il] W. D. Henshaw, A fourth-order accurate method for the incompressible Navier-Stokes equations

on overlapping grids, J. Comp. Phys., 113 (1994), pp. 13-25.
1121 -, Finite difference operators and boundary conditions for Overture, user guide, version

1.00, LANL unclassified report 96-3467, Los Alamos National Laboratory, 1996.
[131 -> Grid, Gn’dFunction and Interpolant classes for Overture , AMR++ and CMPGRD,

user guide, version 1.00, LANL unclassified report 96-3464, Los Alamos National Laboratory,
1996.

[141 -2 Mappings for Overture : A description of the mapping class and documentation for
many useful mappings, LANL unclassified report 96-3469, Los Alamos National Laboratory,
1996.

[151 -7 Ogen: an overlapping grid generator for Overture, LANL unclassified report 96-3466,
Los Alamos National Laboratory, 1996.

WI -> Oges user guide, version 1.00, a solver for steady state boundary value problems on
overlapping grids, LANL unclassified report 96-3468, Los Alamos National Laboratory, 1996.

[171 -3 PlotStuff: a class for plotting stuflfrom Overture , LANL unclassified report 96-3893,
Los Alamos National Laboratory, 1996.

[18] Satish Balay, William Gropp, Lois Curfman McInnes and Barry Smith, The Portable Extensible
Toolkitfor Scientific Computation, http://www.mcs.anl.gov/petsc/petsc.html.

[19] Steve _ Karmesin et.al, Parallel Object Oriented Methods and Applications,
http://www.acl.lanl.gov/PoomaFramework.

[20] D. Quinlan, Adaptive Mesh Refinement for Distributed Parallel Processors, PhD thesis,
University of Colorado, Denver, June 1993.

PI -, A++/P++ manual, LANL Unclassified Report 95-3273, Los Alamos National Labora-
tory, 1995.

[22] Xabier Garaizar, Richard Hornung and Scott Kohn, Structured Adaptive Mesh Refinement
ApplicationsInfracture, http://www.llnl.gov/casc/SAMRAI.

[23] J. L. Steger and J. A. Benek, On the use of composite grid schemes in computational
aerodynamics, Computer lMethods in Applied Mechanics and Engineering, 64 (1987), pp. 301-
320.

